Berenstein-Zelevinsky triangles, elementary couplings and fusion rules

نویسنده

  • L. Bégin
چکیده

We present a general scheme for describing ŝu(N)k fusion rules in terms of elementary couplings, using Berenstein-Zelevinsky triangles. A fusion coupling is characterized by its corresponding tensor product coupling (i.e. its Berenstein-Zelevinsky triangle) and the threshold level at which it first appears. We show that a closed expression for this threshold level is encoded in the Berenstein-Zelevinsky triangle and an explicit method to calculate it is presented. In this way a complete solution of ŝu(4)k fusion rules is obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

N -point and higher-genus osp(1|2) fusion

We study affine osp(1|2) fusion, the fusion in osp(1|2) conformal field theory, for example. Higher-point and higher-genus fusion is discussed. The fusion multiplicities are characterized as discretized volumes of certain convex polytopes, and are written explicitly as multiple sums measuring those volumes. We extend recent methods developed to treat affine su(2) fusion. They are based on the c...

متن کامل

0 su ( N ) tensor product multiplicities and virtual Berenstein - Zelevinsky triangles

Information on su(N) tensor product multiplicities is neatly encoded in Berenstein-Zelevinsky triangles. Here we study a generalisation of these triangles by allowing negative as well as positive integer entries. For a fixed triple product of weights, these generalised Berenstein-Zelevinsky triangles span a lattice in which one may move by adding integer linear combinations of so-called virtual...

متن کامل

51 v 2 1 3 Fe b 20 01 su ( N ) tensor product multiplicities and virtual Berenstein - Zelevinsky triangles

Information on su(N) tensor product multiplicities is neatly encoded in Berenstein-Zelevinsky triangles. Here we study a generalisation of these triangles by allowing negative as well as positive integer entries. For a fixed triple product of weights, these generalised Berenstein-Zelevinsky triangles span a lattice in which one may move by adding integer linear combinations of so-called virtual...

متن کامل

2 00 1 su ( N ) tensor product multiplicities and virtual Berenstein - Zelevinsky triangles

Information on su(N) tensor product multiplicities is neatly encoded in Berenstein-Zelevinsky triangles. Here we study a generalisation of these triangles by allowing negative as well as non-negative integer entries. For a fixed triple product of weights, these generalised Berenstein-Zelevinsky triangles span a lattice in which one may move by adding integer linear combinations of so-called vir...

متن کامل

ar X iv : h ep - t h / 02 09 02 0 v 1 2 S ep 2 00 2 Higher - genus su ( N ) fusion multiplicities as polytope volumes

We show how higher-genus su(N) fusion multiplicities may be computed as the discretized volumes of certain polytopes. The method is illustrated by explicit analyses of some su(3) and su(4) fusions, but applies to all higher-point and higher-genus su(N) fusions. It is based on an extension of the realm of Berenstein-Zelevinsky triangles by including so-called gluing and loop-gluing diagrams. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993